Title of article :
General directional regression
Author/Authors :
Yu، نويسنده , , Zhou and Dong، نويسنده , , Yuexiao and Huang، نويسنده , , Mian، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2014
Pages :
11
From page :
94
To page :
104
Abstract :
Directional regression is an effective sufficient dimension reduction method which implicitly synthesizes the first two conditional moments. In this paper, we extend directional regression to a general family of estimators via the notion of general empirical directions. Data-driven method is used to identify the optimal estimator within this family. Based on the proposed general directional regression estimators, we develop a new methodology for nonlinear dimension reduction. Improvement of general directional regression over classical directional regression is demonstrated via simulation studies and an empirical study with the wine recognition data.
Keywords :
General empirical directions , Nonlinear dimension reduction , permutation test , Sliced inverse regression , Sliced average variance estimation
Journal title :
Journal of Multivariate Analysis
Serial Year :
2014
Journal title :
Journal of Multivariate Analysis
Record number :
1566567
Link To Document :
بازگشت