Title of article :
Invariance properties of the likelihood ratio for covariance matrix estimation in some complex elliptically contoured distributions
Author/Authors :
Besson، نويسنده , , Olivier and Abramovich، نويسنده , , Yuri I.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2014
Pages :
10
From page :
237
To page :
246
Abstract :
The likelihood ratio (LR) for testing if the covariance matrix of the observation matrix X is R has some invariance properties that can be exploited for covariance matrix estimation purposes. More precisely, it was shown in Abramovich et al. (2004, 2007, 2007) that, in the Gaussian case, L R ( R 0 | X ) , where R 0 stands for the true covariance matrix of the observations X , has a distribution which does not depend on R 0 but only on known parameters. This paved the way to the expected likelihood (EL) approach, which aims at assessing and possibly enhancing the quality of any covariance matrix estimate (CME) by comparing its LR to that of R 0 . Such invariance properties of L R ( R 0 | X ) were recently proven for a class of elliptically contoured distributions (ECD) in Abramovich and Besson (2013) and Besson and Abramovich (2013) where regularized CME were also presented. The aim of this paper is to derive the distribution of L R ( R 0 | X ) for other classes of ECD not covered yet, so as to make the EL approach feasible for a larger class of distributions.
Keywords :
Covariance matrix estimation , Elliptically contoured distribution , Expected likelihood , Likelihood ratio
Journal title :
Journal of Multivariate Analysis
Serial Year :
2014
Journal title :
Journal of Multivariate Analysis
Record number :
1566590
Link To Document :
بازگشت