Title of article :
The robustness and efficiency of trimmed elemental estimation in regression analysis: a Monte Carlo simulation study
Author/Authors :
Mayo، نويسنده , , Matthew S. and Gray، نويسنده , , J.Brian، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
8
From page :
323
To page :
330
Abstract :
Mayo and Gray [Am Statist 51 (1997) 122] introduced the leverage-residual weighted elemental (LRWE) classification of regression estimators and proposed a new method of estimation called trimmed elemental estimation (TEE). In this article, we perform a simulation study of the efficiency of certain TEE estimators relative to ordinary least squares under normal errors and their robustness under various non-normal error distributions in the context of the simple linear regression model. Comparisons among these estimators are made on the basis of mean square error and percentiles of the absolute estimation errors in the simulations.
Keywords :
robust regression , Elemental regression , Elemental subset
Journal title :
Probabilistic Engineering Mechanics
Serial Year :
2001
Journal title :
Probabilistic Engineering Mechanics
Record number :
1567246
Link To Document :
بازگشت