Title of article :
A fully Bayesian approach for combining multilevel failure information in fault tree quantification and optimal follow-on resource allocation
Author/Authors :
Hamada، نويسنده , , M. and Martz، نويسنده , , H.F. and Reese، نويسنده , , C.S. and Graves، نويسنده , , T. and Johnson، نويسنده , , V. and Wilson، نويسنده , , A.G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
9
From page :
297
To page :
305
Abstract :
This paper presents a fully Bayesian approach that simultaneously combines non-overlapping (in time) basic event and higher-level event failure data in fault tree quantification. Such higher-level data often correspond to train, subsystem or system failure events. The fully Bayesian approach also automatically propagates the highest-level data to lower levels in the fault tree. A simple example illustrates our approach. The optimal allocation of resources for collecting additional data from a choice of different level events is also presented. The optimization is achieved using a genetic algorithm.
Keywords :
information gain , Markov chain Monte Carlo , genetic algorithm
Journal title :
Reliability Engineering and System Safety
Serial Year :
2004
Journal title :
Reliability Engineering and System Safety
Record number :
1571418
Link To Document :
بازگشت