Title of article :
Temperature and emissivity separation from multispectral thermal infrared observations
Author/Authors :
Schmugge، نويسنده , , Thomas and French، نويسنده , , Andrew and Ritchie، نويسنده , , Jerry C and Rango، نويسنده , , Albert and Pelgrum، نويسنده , , Henk، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Abstract :
Knowledge of the surface emissivity is important for determining the radiation balance at the land surface. For heavily vegetated surfaces, there is little problem since the emissivity is relatively uniform and close to one. For arid lands with sparse vegetation, the problem is more difficult because the emissivity of the exposed soils and rocks is highly variable. With multispectral thermal infrared (TIR) observations, it is possible to estimate the spectral emissivity variation for these surfaces. We present data from the TIMS (Thermal Infrared Multispectral Scanner) instrument, which has six channels in the 8- to 12-μm region. TIMS is a prototype of the TIR portion of the ASTER (Advanced Spaceborne Thermal Emission and Reflection radiometer) instrument on NASAʹs Terra (EOS-AM1) platform launched in December 1999. The Temperature Emissivity Separation (TES) algorithm, developed for use with ASTER data, is used to extract the temperature and six emissivities from the six channels of TIMS data. The algorithm makes use of the empirical relation between the range of observed emissivities and their minimum value. This approach was applied to the TIMS data acquired over the USDA/ARS Jornada Experimental Range in New Mexico. The Jornada site is typical of a desert grassland where the main vegetation components are grass (black grama) and shrubs (primarily mesquite) in the degraded grassland. The data presented here are from flights at a range of altitudes from 800 to 5000 m, yielding a pixel resolution from 3 to 12 m. The resulting spectral emissivities are in qualitative agreement with laboratory measurements of the emissivity for the quartz rich soils of the site. The derived surface temperatures agree with ground measurements within the standard deviations of both sets of observations. The results for the 10.8- and 11.7-μm channels show limited variation of the emissivity values over the mesquite and grass sites indicating that split window approaches may be possible for conditions like these.
Keywords :
Surface temperature , spectral emissivity , thermal infrared , arid lands
Journal title :
Remote Sensing of Environment
Journal title :
Remote Sensing of Environment