Title of article :
Estimating forest structure in wetlands using multitemporal SAR
Author/Authors :
Townsend، نويسنده , , Philip A، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
17
From page :
288
To page :
304
Abstract :
Data from 202 forest plots on the Roanoke River floodplain, North Carolina were used to assess the capabilities of multitemporal radar imagery for estimating biophysical characteristics of forested wetlands. The research was designed to determine the potential for using widely available data from the current set of satellite-borne synthetic aperture radar (SAR) sensors to study forests over broad geographic areas and complex environmental gradients. The SAR data set included 11 Radarsat scenes, 2 ERS-1 images, and 1 JERS-1 scene. Empirical analyses were stratified by flood status such that sites were compared only if they exhibited common flooding characteristics. In general, the results indicate that forest properties are more accurately estimated using data from flooded areas, probably because variations in surface conditions are minimized where there is a continuous surface of standing water. Estimations yielded root mean square errors (RMSEs) for validation data around 10 m2/ha for basal area (BA), and less than 3 m for canopy height. The r2 values generally exceeded .65 for BA, with the best predictions coming from sample sites for which both nonflooded and flooded SAR scenes were available. The addition of early spring normalized difference vegetation index (NDVI) values from Landsat Thematic Mapper (Landsat TM) improved model predictions for BA in forests where BA levels were <55 m2/ha. Further analyses indicated a very limited sensitivity of the individual SAR scenes to differences in forest composition, although soil properties in nonflooded areas exerted a weak but nevertheless important influence on backscatter.
Journal title :
Remote Sensing of Environment
Serial Year :
2002
Journal title :
Remote Sensing of Environment
Record number :
1573802
Link To Document :
بازگشت