Title of article :
Remotely sensed measurements of forest structure and fuel loads in the Pinelands of New Jersey
Author/Authors :
Skowronski، نويسنده , , Nicholas and Clark، نويسنده , , Kenneth and Nelson، نويسنده , , Ross and Hom، نويسنده , , John and Patterson، نويسنده , , Matt، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
7
From page :
123
To page :
129
Abstract :
We used a single-beam, first return profiling LIDAR (Light Detection and Ranging) measurements of canopy height, intensive biometric measurements in plots, and Forest Inventory and Analysis (FIA) data to quantify forest structure and ladder fuels (defined as vertical fuel continuity between the understory and canopy) in the New Jersey Pinelands. The LIDAR data were recorded at 400 Hz over three intensive areas of 1 km2 where transects were spaced at 200 m, and along 64 transects spaced 1 km apart (total of ca. 2500 km2). LIDAR and field measurements of canopy height were similar in the three intensive study areas, with the 80th percentile of LIDAR returns explaining the greatest amount of variability (79%). Correlations between LIDAR data and aboveground tree biomass measured in the field were highly significant when all three 1 km2 areas were analyzed collectively, with the 80th percentile again explaining the greatest amount of variability (74%). However, when intensive areas were analyzed separately, correlations were poor for Oak/Pine and Pine/Scrub Oak stands. Similar results were obtained using FIA data; at the landscape scale, mean canopy height was positively correlated with aboveground tree biomass, but when forest types were analyzed separately, correlations were significant only for some wetland forests (Pitch Pine lowlands and mixed hardwoods; r2 = 0.74 and 0.59, respectively), and correlations were poor for upland forests (Oak/Pine, Pine/Oak and Pine/Scrub Oak, r2 = 0.33, 0.11 and 0.21, respectively). When LIDAR data were binned into 1-m height classes, more LIDAR pulses were recorded from the lowest height classes in stands with greater shrub biomass, and significant differences were detected between stands where recent prescribed fire treatments had been conducted and unburned areas. Our research indicates that single-beam LIDAR can be used for regional-scale (forest biomass) estimates, but that relationships between height and biomass can be poorer at finer scales within individual forest types. Binned data are useful for estimating the presence of ladder fuels (vertical continuity of leaves and branches) and horizontal fuel continuity below the canopy.
Keywords :
fuel loads , Forest biomass , Single-beam LIDAR , Ladder fuels
Journal title :
Remote Sensing of Environment
Serial Year :
2007
Journal title :
Remote Sensing of Environment
Record number :
1575107
Link To Document :
بازگشت