Title of article :
Influence of incidence angle on detecting flooded forests using C-HH synthetic aperture radar data
Author/Authors :
Lang، نويسنده , , Megan W. and Townsend، نويسنده , , Philip A. and Kasischke، نويسنده , , Eric S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
10
From page :
3898
To page :
3907
Abstract :
Hydrology is the single most important abiotic factor in the formation and functioning of a wetland. Many limitations still exist to accurately characterizing wetland hydrology over large spatial extents, especially in forested wetlands. Imaging radar has emerged as a viable tool for wetland flood mapping, although the limitations of radar data remain uncertain. The influence of incidence angle on the ability to detect flooding in different forest types was examined using C-HH Radarsat-1 data (23.5°, 27.5°, 33.5°, 39.0°, 43.5°, and 47.0°) during the leaf-off and leaf-on seasons. The ability to detect flooding under leaf-on conditions varied much more according to incidence angle while forest type (open canopy tupelo-cypress, tupelo-cypress, and bottomland hardwood) had a greater effect during the leaf-off season. When all forest types were considered together, backscatter generally decreased with increasing incidence angle under all conditions (2.45 dB between 23.5° and 47.0° flooded, leaf-off; 2.28 dB between 23.5° and 47.0° not flooded, leaf-off; 0.62 between 23.5° and 43.5° flooded, leaf-on; 1.73 dB between 23.5° and 43.5° not flooded, leaf-on; slope was not constant between incidence angles), but the distinction between flooded and non-flooded areas did not decline sharply with incidence angle. Differentiation of flooded and non-flooded forests was similar during the leaf-off and leaf-on seasons. The ability to detect inundation under forest canopies was less than expected at smaller incidence angles and greater than expected at larger incidence angles, based on the results of previous studies. Use of a wider range of incidence angles during the entire year increases the temporal resolution of imagery which may, in turn, enhance mapping of inundation beneath forest canopies.
Keywords :
Flooding , Hydrology , Hydropattern , Hydroperiod , Incidence angle , Inundation , RADARSAT , synthetic aperture radar , Radar , SAR , swamp , Wetland , Forest
Journal title :
Remote Sensing of Environment
Serial Year :
2008
Journal title :
Remote Sensing of Environment
Record number :
1575560
Link To Document :
بازگشت