Title of article :
Coincidence theorems for involutions
Author/Authors :
Aarts، نويسنده , , Jan M. and Fokkink، نويسنده , , Robbert J. and Vermeer، نويسنده , , Hans، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 1998
Abstract :
Ščepin (1974) and Izydorek and Jaworowski (1995, 1996) showed that for each k and n such that 2k > n there exists a contractible k-dimensional simplicial complex Y and a continuous map ϑ:Sn → Y without the antipodal coincidence property, i.e., ϑ(x) /ne ϑ(−x) for all x ϵ Sn. On the other hand, if 2k ⩽ n then every map ϑ:Sn → Y to a k-dimensional simplicial complex has an antipodal coincidence point. In this paper it is shown that, with some minor modifications, these results remain valid when Sn and the antipodal map are replaced by any normal space and an involution with color number n + 2.
Keywords :
Coloring of involutions , Antipodal coincidence
Journal title :
Topology and its Applications
Journal title :
Topology and its Applications