Title of article :
Free topological groups on metrizable spaces and inductive limits
Author/Authors :
Pestov، نويسنده , , Vladimir and Yamada، نويسنده , , Kohzo، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 1999
Pages :
11
From page :
291
To page :
301
Abstract :
We prove that for a metrizable space X the following are equivalent: (i) the free Abelian topological group A(X) is the inductive limit of the sequence {An(X):n∈N}, where An(X) is formed by all words of reduced length ≤n; (ii) X is locally compact and the set of all non-isolated points of X is separable. In the non-Abelian case, for a metrizable X the following are equivalent: (i) the free topological group F(X) is the inductive limit of the sequence {Fn(X):n∈N}; (ii) X is either locally compact separable or discrete.
Keywords :
Free Abelian topological groups , Metrizable spaces , k-spaces , Free topological groups , Inductive limits
Journal title :
Topology and its Applications
Serial Year :
1999
Journal title :
Topology and its Applications
Record number :
1576119
Link To Document :
بازگشت