Title of article :
The sample ACF of a simple bilinear process
Author/Authors :
Basrak، نويسنده , , Bojan and Davis، نويسنده , , Richard A. and Mikosch، نويسنده , , Thomas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
14
From page :
1
To page :
14
Abstract :
We consider a simple bilinear process Xt=aXt−1+bXt−1Zt−1+Zt, where (Zt) is a sequence of iid N(0,1) random variables. It follows from a result by Kesten (1973, Acta Math. 131, 207–248) that Xt has a distribution with regularly varying tails of index α>0 provided the equation E|a+bZ1|u=1 has the solution u=α. We study the limit behaviour of the sample autocorrelations and autocovariances of this heavy-tailed non-linear process. Of particular interest is the case when α<4. If α∈(0,2) we prove that the sample autocorrelations converge to non-degenerate limits. If α∈(2,4) we prove joint weak convergence of the sample autocorrelations and autocovariances to non-normal limits.
Keywords :
Stochastic recurrence equation , Bilinear process , Sample autocorrelation , Heavy tails , Infinite variance , Stable distribution , Sample autocovariance , Convergence of point processes , Mixing condition
Journal title :
Stochastic Processes and their Applications
Serial Year :
1999
Journal title :
Stochastic Processes and their Applications
Record number :
1576493
Link To Document :
بازگشت