Title of article :
Maxima of increments of partial sums for certain subexponential distributions
Author/Authors :
Lanzinger، نويسنده , , H. and Stadtmüller، نويسنده , , U.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
16
From page :
307
To page :
322
Abstract :
We consider partial sums Sn=X1+X2+⋯+Xn, n∈N, of i.i.d. random variables with moments E(X1)=0, E(X12)=σ2 and sup{t∈R : E(exp((t|X1|)1/psgn(X1))<∞}∈(0,∞) and show thatlimn→∞max0⩽j<nmax1⩽k⩽n−jSj+k−Sjϕ(k/(log n)2p−1)(log n)p=1 a.s.with some explicit function ϕ(·). A related result for random variables with exponentially thin tails has recently been shown by Steinebach, extending a result given by Shao.
Keywords :
subexponential distributions , A.s. convergence , Partial sums , Independent random variables , Maxima of increments , Limit theorem
Journal title :
Stochastic Processes and their Applications
Serial Year :
2000
Journal title :
Stochastic Processes and their Applications
Record number :
1576618
Link To Document :
بازگشت