Title of article :
Lusternik–Schnirelmann category of non-simply connected compact simple Lie groups
Author/Authors :
Iwase ، نويسنده , , Norio and Mimura، نويسنده , , Mamoru and Nishimoto، نويسنده , , Tetsu، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2005
Pages :
13
From page :
111
To page :
123
Abstract :
Let F ↪ X → B be a fibre bundle with structure group G, where B is ( d − 1 ) -connected and of finite dimension, d ⩾ 1 . We prove that the strong L–S category of X is less than or equal to m + dim B d , if F has a cone decomposition of length m under a compatibility condition with the action of G on F. This gives a consistent prospect to determine the L–S category of non-simply connected Lie groups. For example, we obtain cat ( PU ( n ) ) ⩽ 3 ( n − 1 ) for all n ⩾ 1 , which might be best possible, since we have cat ( PU ( p r ) ) = 3 ( p r − 1 ) for any prime p and r ⩾ 1 . Similarly, we obtain the L–S category of SO ( n ) for n ⩽ 9 and PO ( 8 ) . We remark that all the above Lie groups satisfy the Ganea conjecture on L–S category.
Keywords :
Lusternik–Schnirelmann category , Ganea conjecture , Cone decomposition , Lie group
Journal title :
Topology and its Applications
Serial Year :
2005
Journal title :
Topology and its Applications
Record number :
1577183
Link To Document :
بازگشت