Title of article :
Large deviations of kernel density estimator in for uniformly ergodic Markov processes
Author/Authors :
Lei، نويسنده , , Liangzhen and Wu، نويسنده , , Liming، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
24
From page :
275
To page :
298
Abstract :
In this paper, we consider a uniformly ergodic Markov process ( X n ) n ⩾ 0 valued in a measurable subset E of R d with the unique invariant measure μ ( d x ) = f ( x ) d x , where the density f is unknown. We establish the large deviation estimations for the nonparametric kernel density estimator f n * in L 1 ( R d , d x ) and for ‖ f n * - f ‖ L 1 ( R d , d x ) , and the asymptotic optimality f n * in the Bahadur sense. These generalize the known results in the i.i.d. case.
Keywords :
Donsker–Varadhan entropy , Uniformly ergodic Markov process , Bahadur efficiency , Large deviations , Kernel density estimator
Journal title :
Stochastic Processes and their Applications
Serial Year :
2005
Journal title :
Stochastic Processes and their Applications
Record number :
1577555
Link To Document :
بازگشت