Title of article :
Straightening Theorem for bounded Abelian groups
Author/Authors :
de Leo، نويسنده , , Lorenzo and Dikranjan، نويسنده , , Dikran، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2008
Abstract :
We prove that every continuous function f with f ( 0 ) = 0 between two bounded Abelian groups G and H equipped with the Bohr topology coincides with a homomorphism when restricted to an infinite subset of the domain. This extends the main results of [K. Kunen, Bohr topology and partition theorems for vector spaces, Topology Appl. 90 (1998) 97–107, D. Dikranjan, S. Watson, A solution to van Douwenʹs problem on the Bohr topologies, J. Pure Appl. Algebra 163 (2001) 147–158]. Moreover, we give several applications and we answer a question of [B. Givens, K. Kunen, Chromatic numbers and Bohr topologies, Topology Appl. 131 (2) (2003) 189–202].
Keywords :
Bohr topology , Ulm–Kaplansky invariants , Bounded Abelian group
Journal title :
Topology and its Applications
Journal title :
Topology and its Applications