Title of article :
An optimal control variance reduction method for density estimation
Author/Authors :
Kebaier، نويسنده , , Ahmed and Kohatsu-Higa، نويسنده , , Arturo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
38
From page :
2143
To page :
2180
Abstract :
We study the problem of density estimation of a non-degenerate diffusion using kernel functions. Thanks to Malliavin calculus techniques, we obtain an expansion of the discretization error. Then, we introduce a new control variate method in order to reduce the variance in the density estimation. We prove a stable law convergence theorem of the type obtained in Jacod–Kurtz–Protter for the first Malliavin derivative of the error process, which leads us to get a CLT for the new control variate algorithm. This CLT gives us a precise description of the optimal parameters of the method.
Keywords :
Central Limit Theorem , Malliavin Calculus , Kernel density estimation , stochastic differential equations , variance reduction , Weak approximation
Journal title :
Stochastic Processes and their Applications
Serial Year :
2008
Journal title :
Stochastic Processes and their Applications
Record number :
1578039
Link To Document :
بازگشت