Title of article :
Local independence of fractional Brownian motion
Author/Authors :
Norros، نويسنده , , Ilkka and Saksman، نويسنده , , Eero، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
18
From page :
3155
To page :
3172
Abstract :
Let σ ( t , t ′ ) be the sigma-algebra generated by the differences X s − X s ′ with s , s ′ ∈ ( t , t ′ ) , where ( X t ) − ∞ < t < ∞ is the fractional Brownian motion with Hurst index H ∈ ( 0 , 1 ) . We prove that for any two distinct timepoints t 1 and t 2 the sigma-algebras σ ( t 1 − ε , t 1 + ε ) and σ ( t 2 − ε , t 2 + ε ) are asymptotically independent as ε ↘ 0 . We show the independence in the strong sense that Shannon’s mutual information between the two σ -algebras tends to zero as ε ↘ 0 . Some generalizations and quantitative estimates are also provided.
Keywords :
Fractional Brownian motion , Asymptotic , Local , Independence
Journal title :
Stochastic Processes and their Applications
Serial Year :
2009
Journal title :
Stochastic Processes and their Applications
Record number :
1578185
Link To Document :
بازگشت