Title of article :
Bootstrap of the offspring mean in the critical process with a non-stationary immigration
Author/Authors :
Rahimov، نويسنده , , I.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
16
From page :
3939
To page :
3954
Abstract :
In applications of branching processes, usually it is hard to obtain samples of a large size. Therefore, a bootstrap procedure allowing inference based on a small sample size is very useful. Unfortunately, in the critical branching process with stationary immigration the standard parametric bootstrap is invalid. In this paper, we consider a process with non-stationary immigration, whose mean and variance vary regularly with nonnegative exponents α and β , respectively. We prove that 1 + 2 α is the threshold for the validity of the bootstrap in this model. If β < 1 + 2 α , the standard bootstrap is valid and if β > 1 + 2 α it is invalid. In the case β = 1 + 2 α , the validity of the bootstrap depends on the slowly varying parts of the immigration mean and variance. These results allow us to develop statistical inferences about the parameters of the process in its early stages.
Keywords :
Branching process , Non-stationary immigration , Threshold , Martingale theorem , Parametric bootstrap , Skorokhod space
Journal title :
Stochastic Processes and their Applications
Serial Year :
2009
Journal title :
Stochastic Processes and their Applications
Record number :
1578219
Link To Document :
بازگشت