Title of article :
Extremes of multidimensional Gaussian processes
Author/Authors :
D?bicki، نويسنده , , K. and Kosi?ski، نويسنده , , K.M. and Mandjes، نويسنده , , M. and Rolski، نويسنده , , T.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
13
From page :
2289
To page :
2301
Abstract :
This paper considers extreme values attained by a centered, multidimensional Gaussian process X ( t ) = ( X 1 ( t ) , … , X n ( t ) ) minus drift d ( t ) = ( d 1 ( t ) , … , d n ( t ) ) , on an arbitrary set T . Under mild regularity conditions, we establish the asymptotics of log P ( ∃ t ∈ T : ⋂ i = 1 n { X i ( t ) − d i ( t ) > q i u } ) , for positive thresholds q i > 0 , i = 1 , … , n and u → ∞ . Our findings generalize and extend previously known results for the single-dimensional and two-dimensional cases. A number of examples illustrate the theory.
Keywords :
Logarithmic asymptotics , extremes , Gaussian process
Journal title :
Stochastic Processes and their Applications
Serial Year :
2010
Journal title :
Stochastic Processes and their Applications
Record number :
1578340
Link To Document :
بازگشت