Title of article :
A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter
Author/Authors :
Bardet، نويسنده , , J.-M. and Tudor، نويسنده , , C.A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
32
From page :
2331
To page :
2362
Abstract :
By using chaos expansion into multiple stochastic integrals, we make a wavelet analysis of two self-similar stochastic processes: the fractional Brownian motion and the Rosenblatt process. We study the asymptotic behavior of the statistic based on the wavelet coefficients of these processes. Basically, when applied to a non-Gaussian process (such as the Rosenblatt process) this statistic satisfies a non-central limit theorem even when we increase the number of vanishing moments of the wavelet function. We apply our limit theorems to construct estimators for the self-similarity index and we illustrate our results by simulations.
Keywords :
Wavelet analysis , Rosenblatt process , Multiple Wiener-Itô integral , Noncentral limit theorem , self-similarity , Fractional Brownian motion , Parameter estimation
Journal title :
Stochastic Processes and their Applications
Serial Year :
2010
Journal title :
Stochastic Processes and their Applications
Record number :
1578342
Link To Document :
بازگشت