Title of article :
Extremes of the standardized Gaussian noise
Author/Authors :
Kabluchko، نويسنده , , Zakhar، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
Let { ξ k , k ∈ Z d } be a d -dimensional array of independent standard Gaussian random variables. For a finite set A ⊂ Z d define S ( A ) = ∑ k ∈ A ξ k . Let | A | be the number of elements in A . We prove that the appropriately normalized maximum of S ( A ) / | A | , where A ranges over all discrete cubes or rectangles contained in { 1 , … , n } d , converges in law to the Gumbel extreme-value distribution as n → ∞ . We also prove a continuous-time counterpart of this result.
Keywords :
extremes , Gumbel distribution , Gaussian fields , Pickands’ double-sum method , Poisson clumping heuristics , Scan statistics , Local self-similarity
Journal title :
Stochastic Processes and their Applications
Journal title :
Stochastic Processes and their Applications