Title of article :
Kontsevichʹs integral for the Homfly polynomial and relations between values of multiple zeta functions
Author/Authors :
Le، نويسنده , , Tu Quoc Thang and Murakami، نويسنده , , Jun، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 1995
Pages :
14
From page :
193
To page :
206
Abstract :
Kontsevichʹs integral for the Homfly polynomial is studied by using representations of the chord diagram algebras via classical r-matrices for slN and via a Kauffman type state model. We compute the actual value of the image of W(γ) by these representations, where γ is the normalization factor to construct an invariant from the integral. This formula implies relations between values of multiple zeta functions.
Keywords :
Kontsevichיs integral , Homfly polynomial , Zagierיs multiple zeta function
Journal title :
Topology and its Applications
Serial Year :
1995
Journal title :
Topology and its Applications
Record number :
1578591
Link To Document :
بازگشت