Title of article :
Weak solutions of backward stochastic differential equations with continuous generator
Author/Authors :
Bouchemella، نويسنده , , Nadira and Raynaud de Fitte، نويسنده , , Paul، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
34
From page :
927
To page :
960
Abstract :
We prove the existence of a weak solution to a backward stochastic differential equation (BSDE) Y t = ξ + ∫ t T f ( s , X s , Y s , Z s ) d s − ∫ t T Z s d W s in a finite-dimensional space, where f ( t , x , y , z ) is affine with respect to z , and satisfies a sublinear growth condition and a continuity condition. This solution takes the form of a triplet ( Y , Z , L ) of processes defined on an extended probability space and satisfying Y t = ξ + ∫ t T f ( s , X s , Y s , Z s ) d s − ∫ t T Z s d W s − ( L T − L t ) where L is a martingale with possible jumps which is orthogonal to W . The solution is constructed on an extended probability space, using Young measures on the space of trajectories. One component of this space is the Skorokhod space D endowed with the topology S of Jakubowski.
Keywords :
Weak solution , Young measure , Jakubowski’s topology S , Meyer–Zheng , Joint solution measure , Yamada–Watanabe–Engelbert , Condition UT
Journal title :
Stochastic Processes and their Applications
Serial Year :
2014
Journal title :
Stochastic Processes and their Applications
Record number :
1579227
Link To Document :
بازگشت