Title of article :
Existence of selections and disconnectedness properties for the hyperspace of an ultrametric space
Author/Authors :
Bertacchi، نويسنده , , Daniela and Costantini، نويسنده , , Camillo، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 1998
Pages :
19
From page :
179
To page :
197
Abstract :
We characterize the separable complete ultrametric spaces whose Wijsman hyperspace admits a continuous selection; such an investigation is closely connected to a similar result of V. Gutev about the Ball hyperspace. The characterization may be obtained in terms of a suitable property either of the base space (X, d) (condition (#)) or of the Wijsman hyperspace itself (total disconnectedness). We also give a necessary and sufficient condition for the zero-dimensionality of the Wijsman hyperspace of a (separable) ultrametric space, and we provide an example where such a hyperspace turns out to be connected.
Keywords :
Hyperspace , (Separable , Wijsman hypertopology , complete) ultrametric space , Ball hypertopology , Zero-dimensional spaces , Connected and totally disconnected space , Selection , Ball approximation property , Conditions (#) , (?) and (?)
Journal title :
Topology and its Applications
Serial Year :
1998
Journal title :
Topology and its Applications
Record number :
1579284
Link To Document :
بازگشت