Title of article :
Elements related to the largest complete excursion of a reflected BM stopped at a fixed time. Application to local score
Author/Authors :
Chabriac، نويسنده , , Claudie and Lagnoux، نويسنده , , Agnès and Mercier، نويسنده , , Sabine and Vallois، نويسنده , , Pierre، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
22
From page :
4202
To page :
4223
Abstract :
We calculate the density function of ( U ∗ ( t ) , θ ∗ ( t ) ) , where U ∗ ( t ) is the maximum over [ 0 , g ( t ) ] of a reflected Brownian motion U , where g ( t ) stands for the last zero of U before t , θ ∗ ( t ) = f ∗ ( t ) − g ∗ ( t ) , f ∗ ( t ) is the hitting time of the level U ∗ ( t ) , and g ∗ ( t ) is the left-hand point of the interval straddling f ∗ ( t ) . We also calculate explicitly the marginal density functions of U ∗ ( t ) and θ ∗ ( t ) . Let U n ∗ and θ n ∗ be the analogs of U ∗ ( t ) and θ ∗ ( t ) respectively where the underlying process ( U n ) is the Lindley process, i.e. the difference between a centered real random walk and its minimum. We prove that ( U n ∗ n , θ n ∗ n ) converges weakly to ( U ∗ ( 1 ) , θ ∗ ( 1 ) ) as n → ∞ .
Keywords :
Lindley process , Local score , Reflected Brownian motion , Brownian excursions , Inverse of the local time , Donsker invariance theorem
Journal title :
Stochastic Processes and their Applications
Serial Year :
2014
Journal title :
Stochastic Processes and their Applications
Record number :
1579512
Link To Document :
بازگشت