Title of article :
Recurrent critical points and typical limit sets for conformal measures
Author/Authors :
Blokh، نويسنده , , Alexander M. and Mayer، نويسنده , , John C. and Oversteegen، نويسنده , , Lex G.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2000
Pages :
12
From page :
233
To page :
244
Abstract :
For a rational f :Ĉ→Ĉ with a conformal measure μ we show that if there is a subset of the Julia set J(f) of positive μ-measure whose points are not eventual preimages of critical or parabolic points and have limit sets not contained in the union of the limit sets of recurrent critical points, then μ is non-atomic, μ(J(f))=1, ω(x)=J(f) for μ-a.e. point x∈J(f) and f is conservative, ergodic and exact. The proof uses a version of the Lebesgue Density Theorem valid for Borel measures and conformal balls.
Keywords :
Julia set , ?-limit set , Conformal measure , Postcritical set , Complex dynamics
Journal title :
Topology and its Applications
Serial Year :
2000
Journal title :
Topology and its Applications
Record number :
1579653
Link To Document :
بازگشت