Title of article :
Dependence on the spin structure of the eta and Rokhlin invariants
Author/Authors :
Dahl، نويسنده , , Mattias، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2002
Pages :
11
From page :
345
To page :
355
Abstract :
We study the dependence of the eta invariant ηD on the spin structure, where D is a twisted Dirac operator on a (4k+3)-dimensional spin manifold. The difference between the eta invariants for two spin structures related by a cohomology class which is the reduction of a H1(M,Z)-class is shown to be a half integer. As an application of the technique of proof the generalized Rokhlin invariant is shown to be equal modulo 8 for two spin structures related in this way.
Keywords :
Spin structure , Dirac operator , Eta invariant , Rokhlin invariant
Journal title :
Topology and its Applications
Serial Year :
2002
Journal title :
Topology and its Applications
Record number :
1579838
Link To Document :
بازگشت