Title of article :
On cardinal invariants and metrizability of topological inverse semigroups
Author/Authors :
Banakh، نويسنده , , Taras and Bokalo، نويسنده , , Bogdan، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2003
Abstract :
Let S be a topological inverse semigroup, E={x∈S: xx=x} be the maximal semilattice in S, and C={x∈S: xe=ex for every idempotent e∈E} be the maximal Clifford semigroup of S. It is proven that a Lindelöf locally compact semigroup S is metrizable if and only if the maximal Clifford semigroup C is metrizable. We derive from this that a compact topological inverse semigroup S is metrizable, provided the maximal semilattice E and all maximal groups of S are metrizable and one of the following conditions is satisfied: (1)
H) holds;
Gδ-set in the maximal Clifford semigroup C of S;
Lawson semilattice;
ximal groups of C are Lie groups;
yadic or scadic compact;
fragmentable (or Rosenthal) monolithic compactum;
Corson (or Rosenthal) compactum with countable spread.
Keywords :
Topological inverse semigroup , Lawson semilattice , Cardinal invariant , Metrizability , Monolithic space , Fragmentable space , Rosenthal compactum , Corson compact , Clifford semigroup
Journal title :
Topology and its Applications
Journal title :
Topology and its Applications