Title of article :
On cardinal invariants and metrizability of topological inverse semigroups
Author/Authors :
Banakh، نويسنده , , Taras and Bokalo، نويسنده , , Bogdan، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2003
Pages :
10
From page :
3
To page :
12
Abstract :
Let S be a topological inverse semigroup, E={x∈S: xx=x} be the maximal semilattice in S, and C={x∈S: xe=ex for every idempotent e∈E} be the maximal Clifford semigroup of S. It is proven that a Lindelöf locally compact semigroup S is metrizable if and only if the maximal Clifford semigroup C is metrizable. We derive from this that a compact topological inverse semigroup S is metrizable, provided the maximal semilattice E and all maximal groups of S are metrizable and one of the following conditions is satisfied: (1) H) holds; Gδ-set in the maximal Clifford semigroup C of S; Lawson semilattice; ximal groups of C are Lie groups; yadic or scadic compact; fragmentable (or Rosenthal) monolithic compactum; Corson (or Rosenthal) compactum with countable spread.
Keywords :
Topological inverse semigroup , Lawson semilattice , Cardinal invariant , Metrizability , Monolithic space , Fragmentable space , Rosenthal compactum , Corson compact , Clifford semigroup
Journal title :
Topology and its Applications
Serial Year :
2003
Journal title :
Topology and its Applications
Record number :
1580175
Link To Document :
بازگشت