Title of article :
Collections of higher-dimensional hereditarily indecomposable continua, with incomparable Fréchet types
Author/Authors :
Pol، نويسنده , , El?bieta، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2005
Pages :
15
From page :
547
To page :
561
Abstract :
We construct a family {Ys: s∈S} of cardinality 2ℵ0 of hereditarily indecomposable continua which are: (a) n-dimensional Cantor manifolds, for any given natural number n, or (b) hereditarily strongly infinite-dimensional Cantor manifolds, or else (c) countable-dimensional continua of every given transfinite inductive dimension, small or large, such that if h :Ys→Ys′ is an embedding then s=s′ and h is the identity.
Keywords :
Hereditarily strongly infinite-dimensional , Cantor manifolds , Hereditarily indecomposable continua , Dimension
Journal title :
Topology and its Applications
Serial Year :
2005
Journal title :
Topology and its Applications
Record number :
1580550
Link To Document :
بازگشت