Title of article :
Rotational subsets of the circle under
Author/Authors :
Blokh، نويسنده , , Alexander and Malaugh، نويسنده , , James M. and Mayer، نويسنده , , John C. and Oversteegen، نويسنده , , Lex G. and Parris، نويسنده , , Daniel K.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2006
Pages :
31
From page :
1540
To page :
1570
Abstract :
This paper is a study of invariant sets that have “geometric” rotation numbers, which we call rotational sets, for the angle-tripling map σ 3 : T → T , and more generally, the angle-d-tupling map σ d : T → T for d ⩾ 2 . The precise number and location of rotational sets for σ d is determined by d − 1 , 1 d -length open intervals, called holes, that govern, with some specifiable flexibility, the number and location of root gaps (complementary intervals of the rotational set of length ⩾ 1 d ). In contrast to σ 2 , the proliferation of rotational sets with the same rotation number for σ d , d > 2 , is elucidated by the existence of canonical operations allowing one to reduce σ d to σ d − 1 and construct σ d + 1 from σ d by, respectively, removing or inserting “wraps” of the covering map that, respectively, destroy or create/enlarge root gaps.
Keywords :
Complex dynamics , Angle tripling , Circle dynamics , Rotation number , Covering map
Journal title :
Topology and its Applications
Serial Year :
2006
Journal title :
Topology and its Applications
Record number :
1580775
Link To Document :
بازگشت