Title of article :
Ideal convergence of continuous functions
Author/Authors :
Jasinski، نويسنده , , Jakub and Rec?aw، نويسنده , , Ireneusz، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2006
Pages :
8
From page :
3511
To page :
3518
Abstract :
For a given ideal I ⊆ P ( ω ) , IC ( I ) denotes the class of separable metric spaces X such that whenever f n : X → R is a sequence of continuous functions convergent to zero with respect to the ideal I then there exists a set of integers { m 0 < m 1 < ⋯ } from the dual filter F ( I ) such that lim i → ∞ f m i ( x ) = 0 for all x ∈ X . We prove that for the most interesting ideals I, IC ( I ) contains only singular spaces. For example, if I = I d is the asymptotic density zero ideal, all IC ( I d ) spaces are perfectly meager while if I = I b is the bounded ideal then IC ( I b ) spaces are σ-sets.
Keywords :
P-ideals , Statistical convergence , Zero density ideal
Journal title :
Topology and its Applications
Serial Year :
2006
Journal title :
Topology and its Applications
Record number :
1581044
Link To Document :
بازگشت