Title of article :
When is a Volterra space Baire?
Author/Authors :
Cao، نويسنده , , Jiling and Junnila، نويسنده , , Heikki J.K. and Yajima، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2007
Pages :
6
From page :
527
To page :
532
Abstract :
In this paper, we study the problem when a Volterra space is Baire. It is shown that every stratifiable Volterra space is Baire. This answers affirmatively a question of Gruenhage and Lutzer in [G. Gruenhage, D. Lutzer, Baire and Volterra spaces, Proc. Amer. Math. Soc. 128 (2000) 3115–3124]. Further, it is established that a locally convex topological vector space is Volterra if and only if it is Baire; and the weak topology of a topological vector space fails to be Baire if the dual of the space contains an infinite linearly independent pointwise bounded subset.
Keywords :
Resolvable , Simultaneously separated , Stratifiable , Weak topology , Volterra , Baire , Monotonically normal
Journal title :
Topology and its Applications
Serial Year :
2007
Journal title :
Topology and its Applications
Record number :
1581133
Link To Document :
بازگشت