Title of article :
Indivisible ultrametric spaces
Author/Authors :
Delhommé، نويسنده , , Christian and Laflamme، نويسنده , , Claude and Pouzet، نويسنده , , Maurice and Sauer، نويسنده , , Norbert، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2008
Abstract :
A metric space is indivisible if for any partition of it into finitely many pieces one piece contains an isometric copy of the whole space. Continuing our investigation of indivisible metric spaces [C. Delhommé, C. Laflamme, M. Pouzet, N. Sauer, Divisibility of countable metric spaces, European J. Combin. 28 (2007) 1746–1769], we show that a countable ultrametric space is isometrically embeddable into an indivisible ultrametric space if and only if it does not contain a strictly increasing sequence of balls.
Keywords :
Partition theory , Metric spaces , Homogeneous relational structures , Urysohn space , Ultrametric spaces
Journal title :
Topology and its Applications
Journal title :
Topology and its Applications