Title of article :
The transitivity of induced maps
Author/Authors :
Acosta، نويسنده , , Gerardo and Illanes، نويسنده , , Alejandro and Méndez-Lango، نويسنده , , Héctor، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2009
Abstract :
For a metric continuum X, we consider the hyperspaces 2 X and C ( X ) of the closed and nonempty subsets of X and of subcontinua of X, respectively, both with the Hausdorff metric. For a given map f : X → X we investigate the transitivity of the induced maps 2 f : 2 X → 2 X and C ( f ) : C ( X ) → C ( X ) . Among other results, we show that if X is a dendrite or a continuum of type λ and f : X → X is a map, then C ( f ) is not transitive. However, if X is the Hilbert cube, then there exists a transitive map f : X → X such that 2 f and C ( f ) are transitive.
Keywords :
Continuum , Continuum of type ? , dendrite , Induced map , transitivity , Hilbert cube , Topological entropy
Journal title :
Topology and its Applications
Journal title :
Topology and its Applications