Title of article :
Knots with and and Morimotoʹs Conjecture
Author/Authors :
Kobayashi، نويسنده , , Tsuyoshi and Rieck، نويسنده , , Yoʹav، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2009
Pages :
4
From page :
1114
To page :
1117
Abstract :
We show that there exist knots K ⊂ S 3 with g ( E ( K ) ) = 2 and g ( E ( K # K # K ) ) = 6 . Together with [Tsuyoshi Kobayashi, Yoʹav Rieck, On the growth rate of the tunnel number of knots, J. Reine Angew. Math. 592 (2006) 63–78, Theorem 1.5], this proves existence of counterexamples to Morimotoʹs Conjecture [Kanji Morimoto, On the super additivity of tunnel number of knots, Math. Ann. 317 (3) (2000) 489–508]. This is a special case of [Tsuyoshi Kobayashi, Yoʹav Rieck, Knot exteriors with additive Heegaard genus and Morimotoʹs Conjecture, Algebr. Geom. Topol. 8 (2008) 953–969, preprint version available at http://arxiv.org/abs/math.GT/0701765, 2007].
Keywords :
3-Manifolds , Heegaard splittings , Tunnel number , knots
Journal title :
Topology and its Applications
Serial Year :
2009
Journal title :
Topology and its Applications
Record number :
1581953
Link To Document :
بازگشت