Author/Authors :
Bacigalupo، نويسنده , , David A. and van Hemert، نويسنده , , Jano and Chen، نويسنده , , Xiaoyu and Usmani، نويسنده , , Asif and Chester، نويسنده , , Adam P. and He، نويسنده , , Ligang and Dillenberger، نويسنده , , Donna N. and Wills، نويسنده , , Gary B. and Gilbert، نويسنده , , Lester and Jarvis، نويسنده , , Stephen A.، نويسنده ,
Abstract :
The automatic allocation of enterprise workload to resources can be enhanced by being able to make what–if response time predictions whilst different allocations are being considered. We experimentally investigate an historical and a layered queuing performance model and show how they can provide a good level of support for a dynamic-urgent cloud environment. Using this we define, implement and experimentally investigate the effectiveness of a prediction-based cloud workload and resource management algorithm. Based on these experimental analyses we: (i) comparatively evaluate the layered queuing and historical techniques; (ii) evaluate the effectiveness of the management algorithm in different operating scenarios; and (iii) provide guidance on using prediction-based workload and resource management.
Keywords :
cloud , HYDRA historical model , FireGrid , Layered queuing , Performance modelling