Title of article :
Upper bound for the alternation number of a torus knot
Author/Authors :
Kanenobu، نويسنده , , Taizo، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2010
Pages :
17
From page :
302
To page :
318
Abstract :
We give an upper bound for the alternation number of a torus knot which is of either 3-, 4-, or 5-braid or of other special types. Using the inequality relating the alternation number, signature, and Rasmussen s-invariant, discovered by Abe, we determine the alternation numbers of the torus knots T ( 3 , l ) , l ≡ 1 , 2 ( mod 6 ) , and T ( 4 , 5 ) . Also, for any positive integer k we construct infinitely many 3-braid knots with alternation number k.
Keywords :
Torus knot , 3-braid knot , Signature , Rasmussen s-invariant , Alternation number
Journal title :
Topology and its Applications
Serial Year :
2010
Journal title :
Topology and its Applications
Record number :
1582364
Link To Document :
بازگشت