Title of article :
o-Boundedness of free topological groups
Author/Authors :
Banakh، نويسنده , , Taras and Repov?، نويسنده , , Du?an and Zdomskyy، نويسنده , , Lyubomyr Zdomskyy، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2010
Pages :
16
From page :
466
To page :
481
Abstract :
Assuming the absence of Q-points (which is consistent with ZFC) we prove that the free topological group F ( X ) over a Tychonov space X is o-bounded if and only if every continuous metrizable image T of X satisfies the selection principle ⋃ fin ( O , Ω ) (the latter means that for every sequence 〈 u n 〉 n ∈ ω of open covers of T there exists a sequence 〈 v n 〉 n ∈ ω such that v n ∈ [ u n ] < ω and for every F ∈ [ X ] < ω there exists n ∈ ω with F ⊂ ⋃ v n ). This characterization gives a consistent answer to a problem posed by C. Hernándes, D. Robbie, and M. Tkachenko in 2000.
Keywords :
Q-point , ? ) -bounded group , Free (Abelian) topological group , Scheepers property , Semifilter , F -Menger property , ( o
Journal title :
Topology and its Applications
Serial Year :
2010
Journal title :
Topology and its Applications
Record number :
1582387
Link To Document :
بازگشت