Title of article :
Multistage n-dimensional universal spaces and extensions
Author/Authors :
Pasynkov، نويسنده , , B.A.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2010
Abstract :
Let I τ be the Tychonoff cube of weight τ ⩾ ω with a fixed point, σ τ and Σ τ be the correspondent σ- and Σ-products in I τ and σ τ ⊂ ( Σ σ τ = ( σ τ ) ω ) ⊂ Σ τ . Then for any n ∈ { 0 , 1 , 2 , … } , there exists a compactum U n τ ⊂ I τ of dimension n such that for any Z ⊂ I τ of dimension ⩽ n , there exists a topological embedding of Z in U n τ that maps the intersections of Z with σ τ , Σ σ τ and Σ τ to the intersections U σ n τ , U Σ σ n τ and U Σ n τ of U n τ with σ τ , Σ σ τ and Σ τ , respectively; U σ n τ , U Σ σ n τ and U Σ n τ are n-dimensional and U σ n τ is σ-compact, U Σ σ n τ is a Lindelöf Σ-space and U Σ n τ is a sequentially compact normal Fréchet–Urysohn space. This theorem (on multistage universal spaces of given dimension and weight) implies multistage extension theorems (in particular, theorems on Corson and Eberlein compactifications) for Tychonoff spaces.
Keywords :
?- , Eberlein and Valdivia compacta , ??- and ?-embeddable spaces , factorization theorem , Compactification , Universal space , Corson , Dimension
Journal title :
Topology and its Applications
Journal title :
Topology and its Applications