Title of article :
Homotopy, Δ-equivalence and concordance for knots in the complement of a trivial link
Author/Authors :
Fleming، نويسنده , , Thomas and Shibuya، نويسنده , , Tetsuo and Tsukamoto، نويسنده , , Tatsuya and Yasuhara، نويسنده , , Akira، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2010
Pages :
13
From page :
1215
To page :
1227
Abstract :
Link-homotopy and self Δ-equivalence are equivalence relations on links. It was shown by J. Milnor (resp. the last author) that Milnor invariants determine whether or not a link is link-homotopic (resp. self Δ-equivalent) to a trivial link. We study link-homotopy and self Δ-equivalence on a certain component of a link with fixing the other components, in other words, homotopy and Δ-equivalence of knots in the complement of a certain link. We show that Milnor invariants determine whether a knot in the complement of a trivial link is null-homotopic, and give a sufficient condition for such a knot to be Δ-equivalent to the trivial knot. We also give a sufficient condition for knots in the complements of the trivial knot to be equivalent up to Δ-equivalence and concordance.
Keywords :
Self ?-equivalence , Link-homotopy , Milnor invariants
Journal title :
Topology and its Applications
Serial Year :
2010
Journal title :
Topology and its Applications
Record number :
1582507
Link To Document :
بازگشت