Title of article :
Coincidences of projections and linear n-valued maps of tori
Author/Authors :
Brown، نويسنده , , Robert F. and Lo Kim Lin، نويسنده , , Jon T.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2010
Pages :
9
From page :
1990
To page :
1998
Abstract :
We prove that the Nielsen fixed point number N ( φ ) of an n-valued map φ : X ⊸ X of a compact connected triangulated orientable q-manifold without boundary is equal to the Nielsen coincidence number of the projections of the graph of φ, a subset of X × X , to the two factors. For certain q × q integer matrices A, there exist “linear” n-valued maps Φ n , A , σ : T q ⊸ T q of q-tori that generalize the single-valued maps f A : T q → T q induced by the linear transformations T A : R q → R q defined by T A ( v ) = A v . By calculating the Nielsen coincidence number of the projections of its graph, we calculate N ( Φ n , A , σ ) for a large class of linear n-valued maps.
Keywords :
n-Valued map , Nielsen number , Nielsen coincidence number
Journal title :
Topology and its Applications
Serial Year :
2010
Journal title :
Topology and its Applications
Record number :
1582595
Link To Document :
بازگشت