Title of article :
Strong zero-dimensionality of hyperspaces
Author/Authors :
Kemoto، نويسنده , , Nobuyuki and Terasawa، نويسنده , , Jun، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2010
Pages :
7
From page :
2376
To page :
2382
Abstract :
For a space X, 2 X denotes the collection of all non-empty closed sets of X with the Vietoris topology, and K ( X ) denotes the collection of all non-empty compact sets of X with the subspace topology of 2 X . The following are known:• s not normal, where ω denotes the discrete space of countably infinite cardinality. ery non-zero ordinal γ with the usual order topology, K ( γ ) is normal iff cf γ = γ whenever cf γ is uncountable. is paper, we will prove:(1) s strongly zero-dimensional. ) is strongly zero-dimensional, for every non-zero ordinal γ. ), we use the technique of elementary submodels.
Keywords :
Elementary submodel , Ordinal , Strongly zero-dimensional , normal , Hyperspace
Journal title :
Topology and its Applications
Serial Year :
2010
Journal title :
Topology and its Applications
Record number :
1582646
Link To Document :
بازگشت