Title of article :
On the variations of the Betti numbers of regular levels of Morse flows
Author/Authors :
Bertolim، نويسنده , , M.A. and de Rezende، نويسنده , , K.A. and Manzoli Neto، نويسنده , , O. and Vago، نويسنده , , G.M.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2011
Pages :
14
From page :
761
To page :
774
Abstract :
We generalize results in Cruz and de Rezende (1999) [7] by completely describing how the Betti numbers of the boundary of an orientable manifold vary after attaching a handle, when the homology coefficients are in Z, Q, R or Z p Z with p prime. First we apply this result to the Conley index theory of Lyapunov graphs. Next we consider the Ogasa invariant associated with handle decompositions of manifolds. We make use of the above results in order to obtain upper bounds for the Ogasa invariant of product manifolds.
Keywords :
Handle decomposition , Conley index , Ogasa invariant , Betti numbers
Journal title :
Topology and its Applications
Serial Year :
2011
Journal title :
Topology and its Applications
Record number :
1582837
Link To Document :
بازگشت