Title of article :
A fixed point theorem for the pseudo-circle
Author/Authors :
Boronski، نويسنده , , J.P.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2011
Abstract :
Let f : C → C be a self-map of the pseudo-circle C . Suppose that C is embedded into an annulus A , so that it separates the two components of the boundary of A . Let F : A → A be an extension of f to A (i.e. F | C = f ). If F is of degree d then f has at least | d − 1 | fixed points. This result generalizes to all plane separating circle-like continua.
Keywords :
Pseudo-circle , Fixed point , Pseudo-arc , Circle-like continuum , Nielsen class
Journal title :
Topology and its Applications
Journal title :
Topology and its Applications