Title of article :
Finite type invariants of nanowords and nanophrases
Author/Authors :
Gibson، نويسنده , , Andrew and Ito، نويسنده , , Noboru، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2011
Pages :
23
From page :
1050
To page :
1072
Abstract :
Homotopy classes of nanowords and nanophrases are combinatorial generalizations of virtual knots and links. Goussarov, Polyak and Viro defined finite type invariants for virtual knots and links via semi-virtual crossings. We extend their definition to nanowords and nanophrases. We study finite type invariants of low degrees. In particular, we show that the linking matrix and T invariant defined by Fukunaga are finite type of degree 1 and degree 2 respectively. We also give a finite type invariant of degree 4 for open homotopy of Gauss words.
Keywords :
Nanowords , Nanophrases , Homotopy invariant , Finite type invariant
Journal title :
Topology and its Applications
Serial Year :
2011
Journal title :
Topology and its Applications
Record number :
1582877
Link To Document :
بازگشت