Title of article :
The water-equivalence of phantom materials for 90Sr-90Y beta particles
Author/Authors :
Thomadsen، Bruce R. نويسنده , , Buckley، Lesley A. نويسنده , , DeWerd، Larry A. نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2015
Abstract :
Intravascular brachytherapy requires that the dose be specified within millimeters of the source. High dose gradients near brachytherapy sources require that the source-detector distance be accurately known for dosimetry purposes. Solid phantoms can be designed to accommodate these stringent requirements. This study reports dosimeter readings from 90Sr-90Y sources measured in water, A150, polystyrene and in an epoxy-based water-equivalent plastic. Measurements showed that while A150 and the epoxy-based plastic agreed well with water when the surface of the source contacted the detector housing, the relative response in the phantoms decreased with increasing depth in phantom, falling to ~0.55 those of water at a depth of 5 mm. Readings in polystyrene were within 4% of those in water between 1 and 2 mm depth. However, while polystyrene followed water more closely than the other two materials, at greater depths the relative response in polystyrene to water varied from 0.65 to 1.34. When the density of the materials is accounted for, the relative response in A150 is nearly constant with increasing areal density. Furthermore, the response in A150 shows the closest agreement with that in water of any of the solid materials for higher areal densities. For values below 0.3 g/cm2, polystyrene shows the closest agreement with water.
Keywords :
short circuit current , power quality , Fault current limiter , transient over voltage
Journal title :
MEDICAL PHYSICS
Journal title :
MEDICAL PHYSICS