Title of article :
Continuous right zero homomorphisms of
Author/Authors :
Toko، نويسنده , , Wilson and Zelenyuk، نويسنده , , Yuliya، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2012
Pages :
5
From page :
744
To page :
748
Abstract :
A mapping π : T → X of a semigroup T into a set X is a right zero homomorphism if π ( p q ) = π ( q ) for all p , q ∈ T . Let S be a discrete cancellative semigroup of cardinality κ ⩾ ω , let βS be the Stone–Čech compactification of S, and let U ( S ) denote the ideal of βS consisting of uniform ultrafilters. We show that (a) if κ > ω , then U ( S ) admits a continuous right zero homomorphism onto U ( κ ) , and (b) if κ = ω , then U ( S ) admits a continuous right zero homomorphism onto any connected compact metric space and onto a connected compact Hausdorff space of cardinality 2 2 ω .
Keywords :
Stone–?ech compactification , Uniform ultrafilter , Left ideal decomposition , Right zero homomorphism , Slowly oscillating function , Connected compact metric space
Journal title :
Topology and its Applications
Serial Year :
2012
Journal title :
Topology and its Applications
Record number :
1583236
Link To Document :
بازگشت