Title of article :
What is a non-metrizable analog of metrizable compacta? (Part I)
Author/Authors :
Pasynkov، نويسنده , , B.A.، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2012
Pages :
11
From page :
1750
To page :
1760
Abstract :
Two classes of compacta were introduced: the class of metrcompacta and more wide class of weak metrcompacta. Both classes are countably productive. The class of weak metrcompacta is a strict subclass of uniform Eberlein compacta. For any cardinal number τ, there exists a rather simple metrcompactum that is a topologically universal element in the class of all weak metrcompacta (and metrcompacta) of weight τ. Every weak metrcompactum (in particular, every metrcompactum) has a 0-dimensional map onto a metrizable compactum and so the dimensions dim, ind, Ind and Δ coincide for all weak metrcompacta (and metrcompacta). Every metrizable space X has a compactification cX that is a metrcompactum with dim X ⩽ dim c X .
Keywords :
Dimension , Universal compacta , Metrcompacta , Compactifications of metrizable spaces , Partial topological products
Journal title :
Topology and its Applications
Serial Year :
2012
Journal title :
Topology and its Applications
Record number :
1583347
Link To Document :
بازگشت