Title of article :
Nielsen coincidence theory applied to Borsuk–Ulam geometric problems
Author/Authors :
Cotrim، نويسنده , , Fabiana Santos and Vendrْscolo، نويسنده , , Daniel، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2012
Pages :
8
From page :
3738
To page :
3745
Abstract :
This work uses Nielsen coincidence theory to discuss solutions for the geometric Borsuk–Ulam question. It considers triples ( X , τ ; Y ) where X and Y are topological spaces and τ is a free involution on X, ( X , τ ; Y ) satisfies the Borsuk–Ulam theorem if for any continuous map f : X → Y there exists a point x ∈ X such that f ( x ) = f ( τ ( x ) ) . Borsuk–Ulam coincidence classes are defined and a notion of essentiality is defined. The classical Borsuk–Ulam theorem and a version for maps between spheres are proved using this approach.
Keywords :
Borsuk–Ulam theorem , coincidence , Nielsen theory
Journal title :
Topology and its Applications
Serial Year :
2012
Journal title :
Topology and its Applications
Record number :
1583590
Link To Document :
بازگشت