Title of article :
Maximal metrizable remainders of locally compact spaces
Author/Authors :
Chatyrko، نويسنده , , Vitalij A. and Karassev، نويسنده , , Alexandre، نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2013
Abstract :
Let R con be the set of classes R ( X ) of remainders of metrizable compactifications of all locally compact noncompact connected separable metrizable spaces X. Results of Chatyrko and Karassev (2013) [4] imply that R con is ordered by inclusion. For a given locally compact noncompact connected metrizable space X we construct a zero-dimensional metrizable remainder of X which contains any other zero-dimensional element of R ( X ) . As application of this we show that R con , ordered by inclusion, is isomorphic to ω 1 + 1 .
Keywords :
order , Locally compact space , Separable metrizable space , Metrizable compactification , Metrizable remainder , Maximal remainder
Journal title :
Topology and its Applications
Journal title :
Topology and its Applications